About Ngahue IV-Inside

Look what I found... Inside Ngahue IV

The Boat's Electronics

When we bought our boat as HR53 Tabaluga, we discovered that she had an interesting and most eclectic collection of old and new electronics on board. On the one hand, we still sported her 1995 Furuno analogue radar that took in excess of 4 minutes to warm up (not exactly useful for quickly checking up on an Atlantic squall racing in your direction). Yet on the other hand, there was a quasi-professional Class A Comar CSA-300 AIS system linked to a reasonably modern and big Garmin plotter...
We decided that for Ngahue IV we wanted to rationalise all this equipment; we wanted to opt for a robust manufacturer, have adequate "reserves" in the electronic systems, and have instruments that were reliable and would always work. After a lengthy discussion at 2016 BOOT Düsseldorf with Mr Sirko Feldbinder of Mare Multimedia, we agreed to go for a new and complete set of Furuno instruments. Only a few of the really good existing instruments on board were kept, such as the AIS unit and the professional Thrane & Thrane VHF (although a year later this set too was replaced by a more modern albeit lower-end Simrad unit). In preparing for our circumnavigation (first departure), we ended up with the following, mainly Furuno material on board:

> 2 Furuno TZTL12F multi-function plotter displays: one in the cockpit and one at the inboard charttable

> 5 Furuno FI-70 multi-function instrument displays: 4 over the main hatch and 1 at the inboard charttable

> Furuno GP-33 Navigator GPS set as a back-up to the GPS sets incorporated in the Furuno plotters and the Comar AIS

> Furuno open array solid state scanner DRS6A X-Class - the latest generation scanner when lauched in 2016

> Furuno Navpilot 711C with 2 control points (steering pedestal & charttable) operating a Simrad-Robertson hydraulic drive - this, in our eyes RUBBISH unit was ditched and replaced by a couple of Raymarine units a year later - see below

> Raymarine Autopilot Controller ST 6002/SG3 Course Computer & Smartpilot (handheld remote steering device) operating a Lewmar Mambadrive (1/4 HP) - this back-up autopilot was also replaced/upgraded at the same time that we ditched the Furuno unit - see below. The Mamba drive also suffered "issues" and needed to be repaired at the factory before becoming more reliable.

> Raymarine (Autohelm) backup depth meter from 1995 displayed over an ST50 MULTI display (this unit seems quite indestructible!)

> Comar CSA 300 Class A AIS which broke down but could be repaired in the Canary Islands in October 2019 - we keep a Raymarine a700 Class B transceiver as reserve just in case the Comar breaks down again. Our Simrad VHF has back-up AIS functionalities

After 26 years of using Raymarine equipment, we had great difficulty in getting used to the "Furuno way of thinking". It was only after much reading of the manuals that we have, with time, become better acquainted with our new electronics (although there are always the regular and quick dashes to the instruction books to find how to perform some function that we don't use regularly as with Furuno NOTHING IS LOGICAL, in my humble mind). Another thing we discovered, but Furuno claims it is not their fault, is that the electronic charts we now use don't seem as good as the Navionics ones we had in our previous Raymarine C90W plotters on the HR37 & 43. Charts in the Furuno plotters "jump" on the seams between two areas that were put together, and during our 2016 summer cruise we sailed twice by the Calshot Spit float - a major navigational mark in The Solent - and did not see it on our e-chart!!! We took pictures of this incident and queried our mapmakers, who nodded and admitted that they get their chart material from C-Maps. And if C-Maps isn't correct, then our Mapmedia charts for the Furuno can't be up to date either. It does make you wonder what was scanned and what wasn't... And why the same markso DO show up on Raymarine equipment... Passing Calshot Spit again in 2018, we noticed an improvement: at least the buoy's name came up on the plotter, even if the buoy itself still didn't!!! Perhaps the buoy is sulking with us??!! Pictured here is the boat's navigation corner as it was during the 2018/19 winter lay-up (hence the drapes visible in the background): it is getting quite busy in the nav area with all the new gear now installed, including the ICOM M-802 SSB. In August 2018, we removed a Fastnet 55 Radio receiver and a Furuno weatherfax machine situated on the wall behind the navigator's seat and used the place to put our Iridium phone handset. The original place for the handset was in August 2018 taken up by the ICOM SSB!!

When we set out in 2017 first timle for our circumnavigation, the boat's navigational electronics were actually pretty up to date. Surprisingly though, in 2017, before we left, the Furuno wind instrument broke down, and needed to be replaced under guarantee (with a lot of dark mutterings from the Furuno engineer...). The radar recommended by Sirko Feldbinder did give wonderfully crisp and sharp images in Belgium, and would have shown up squalls at a good distance had it continued to function throughout 2017. Unfortunately, it didn't, and on our first Atlantic crossing, because of a loose connection (??), we were deprived of its joys and use! Other issues encountered with the Furuno instruments were:

> software bugs with the wind instrument (it never gave the correct Beaufort scale number with the prevailing windspeed - this was remedied in June 2019);

> as already mentioned the wind mast-head sensor breaking down after a few months use;

> the log/depth sounder transducer from Airmar that broke down after 22 months and stopped working altogether as we picked our way into Bermuda (where there are lots of dangerous reefs and hidden rocks! After a LOT of pestering, we received a replacement unit from Furuno);

> another software bug with the log/odometer (it doesn't go beyond 999*miles! An issue we thought was remedied in June 2019 but returned again in March 2020 when we hit the 10.000M mark again. It now displays *999M which is of course a GREAT IMPROVEMENT;

> the active aerial for the Navtex not giving any usable signal! (Oh well, we now use the RR aerial in the mast for this)

All of this is hardly an advertisement for Furuno reliability...to say nothing of their (in our case at least) very miserable customer service! In July 2019, Mr Feldbinder, our German "Mr Electronics" spent 6 hours updating the software on our two plotters and the 5 FI70 instruments; they were then brought up to the latest level of software, and many (all?) of the bugs we experienced between 2016 and 2018 should have been resolved. Should... and in actual fact were not :-(!!! We certainly hoped so, if only out of respect for all the trouble that Mr Feldbinder put into performing this update. Not the easiest of tasks... BUT, the updated instruments have since shown new bugs and our Raymarine autopilots are constantly protesting at the strange data-input they get from the updated Furuno instruments (there were no bugs before the software update in late 2018, so it was quite easy to isolate the source of the issue!!). While we are brooding on a solution, the "bridge" between the Furuno instruments and the Raymarine instruments has been cut and disconnected! The solution will be two new bridges that will filter out the crud info provided by the Furuno instruments, so that the Raymarine autopilots will be given proper speed through the water and wind information. What a mess. We will refuse access to any Furuno technician bearing a memory stick with updates: they are worse than the Greeks bearing gifts for the Trojans!

Steering, autopilots - and their saga

Ngahue IV has always had two full and completely separate autopilots in case one should break down. Both actually broke en route to Lanzarote in the summer of 2017! When we bought the boat, she only had a single Raymarine SG3 course computer that steered a couple of Simrad-Robertson hydraulic rams configured in push-pull mode on the rudder quadrant. We wished to add a second autopilot and were advised to install a new Furuno course computer which was to drive a Lewmar 1/4HP Mamba drive. The Mamba drive bolts on to the Whitlock steering system and simply fits onto a splined shaft on the junction box that is in the engine room. During the refit period in Kiel in April 2016, the Mamba drive couldn't be delivered on time (shame on Lewmar!). As a stop-gap measure, the new Furuno course computer was (temporarily) linked to the Simrad-Robertson hydraulic linear drives (which - we are told - are extremely powerful).

It took the Furuno course computer some time to "learn" about the boat and initially the wheel in the cockpit swung madly and dangerously from left to right while the Furuno unit was learning about the adjustments needed to steer the boat!! The Mamba drive, when it finally arrived, was connected with the Furuno, as we had originally planned. But it quickly generated several fatal error messages and needed to be reset. The Furuno was then re-connected to the Simrad Robertson hydraulic drives again, and the wildly swinging steering wheel returned. In order to keep the swinging under control, we fitted a couple of bungee cords (see photo), which seemed to work quite well, even if it was a bit of a strange set-up for such a modern and hi-tech installation. Several months later, though, the Furuno had "auto-learned" enough for us to remove the bungee cords... The Mamba (see more below) was subsequently linked to the old Raymarine course computer. This is a pretty standard Hallberg-Rassy set-up.

After many testing sessions and a few extra repairs, we seemed, by the time of the first departure for our circumnavigation in the summer of 017, to have found most of the needed and acceptable settings on the Furuno whereby the Simrad-Robertson hydraulic drives no longer swung the wheel too wildly from port to starboard, and the Mamba drive didn't feed electro-magnetic information back to the course computer which then went into "fail" mode... Before leaving in 2017, unfortunately, we never got round to properly testing our auto-pilot drives for long-term reliability. We were quite dismayed, therefore, that during our trip down to the Canary Islands one autopilot after the other failed in mid-sea. Actually it was a salutary experience to have to sail our boat manually as we discovered that: a) it could be done; and b) it was not as exhausting as we had feared. In fact, the boat steered very nicely and very lightly!

When the boat was in Lanzarote, we reviewed both autopilots critically and prepared new and back-up spare parts for them so as to avoid repeats! Some issues remained, and the Simrad Robertson hydraulics again broke a connecting pin near Bonaire in the Caribbean! Continuing our circumnavigation double handed and entering the Pacific, we felt that we needed 2 fully operational autopilots that we could trust 100%. So we decided to return to Europe to look into this and a number of other issues that we had with the boat...

On our way back to Holland, we stopped over in Swanwick marina in August 2018, where we had both old Autopilots removed and replaced with a pair of new Raymarine Evolution EV-400 Autopilots. These steer the boat quietly, confidently and ever so gently! Our favorite boat electronics people, Maricom who are based at Swanwick marina, installed two completely separate and independent autopilot systems: Autopilot-1 and Autopilot-2. N° 1 is our main pilot as it uses the Simrad-Robertson hydraulic drives; N° 2 uses the Mamba drive to steer the boat. You switch from one pilot to the other with a simple switch on the steering pedestal. There is a 5 second delay as screens go black and the other pilot comes on line, and all power is removed from one drive and transferred to the other for it to come on line. Both pilots receive vital navigational data from the remaining Furuno equipment via a pretty complicated-looking, but apparently quite simple data "bridge". Compared to the Furuno information displayed, there is just one line now missing on the plotter, namely the current fixed heading line; you do retain, as with the Furuno pilot, the general heading of the boat as corrected and adapted all the time by the autopilot. Perhaps in close coastal sailing one would want the peace of mind offered by that straight line of the fixed heading. But as the Furuno pilot wandered 30-40° off course in all directions, that fixed line was a bit of a joke anyway.

Just before our second departure for our circumnavigation, Mr Feldbinder, our "Mr Furuno", came and updated our software. After he left we started experiencing problems with our Raymarine autopilots. Despite best efforts from Raymarine (not Furuno) we found that the only way to stop our auto-pilots from being alarmed all the time was to disconnect the data "bridge". Two new data bridges will be installed by Maricom (Raymarine Spain actually admitted in Las Palmas that their bridges weren't very good!!!) so that from 2021 onwards we should be able to have two complete auto-pilots systems. Actually, even without wind and water speed input, the Raymarine autopilots perform VERY WELL under nearly all circumstances. They just get a little twitchy when a series of following waves throw the boat around!

There are control units for the Raymarine autopilots at the steering pedestal and at the inside chart-table. The Smartpilot remote control that we have will operate the pilot that is active at the time. It sits in your hand and allows full steering from where you are on board.

Summarising therefore -> Based on our sailing in August & September 2018, the new system worked perfectly, and our stress levels returned to normal - the way it should be! UNFORTUNATELY, in May 2019, Mr Feldbinder of Mare-media who had installed all the Furuno equipment visited us in Bruinisse and updated all the software on the Furuno plotters and the Furuno instruments. Rats, the perfect chatter between Raymarine and Furuno via our "bridge" was disrupted by regular "No pilot" alarms appearing on the Raymarine screens. When it comes to "software", finding the error is develishly difficult! After all this, our conclusion is that Furuno Autopilots are not made for (our) sailing boat(s); Raymarine Autopilots are. Furuno makes good radars, although the latest Raymarine units certainly give Furuno a run for their money. For other navigational equipment, any brand will do. Perhaps it was just our bad luck, but EVERY individual Furuno instrument on board has broken down or displayed one or several quite severe faults: log, odometer, depth, wind instrument, water thermometer, Navtex. Even the plastic holder of the GPS aerial rusts! Our experience with Furuno Customer service has been quite appalling too... The company simply ignores you and hopes you will go away, or promises to do something which then never materialises either. In short, WE ARE NOT FURUNO FANS (ANY MORE)!!! Our frustration with Furuno increased again because as a result of updating the software in our instruments, the seamless communication between Raymarine and Furuno in August 2018 disappeared in June 2019 - Oh Furuno, can't you ever get it right??? Rubbish equipment in our eyes!!!

In 1995, Hallberg-Rassy fitted out our boat with a Whitlock Mamba steering system. That was a long time ago, and the Whitlock brand/company has since been bought up by Lewmar. Unfortunately, information on early steering systems is very hard to come by, as are the people who know something about them. The documentation that was supplied with our boat was in part irrelevant, and on several points quite unclear as to what should be done to the system… After some trawling on Internet, we found Cliff Mogridge of Whitlock steering who proved to be helpful with designs and information on our steering system. Cliff used to work for Whitlock and Lewmar. Unfortunately, he never responded to our fervent request that he come on boat during 2018 summer to look at, and service our steering. A pity! Mechanically speaking, Whitlock systems are pretty simple and extremely robust. They do require regular maintenance, but can take large amounts of abuse before actually failing. The various components are: the steering wheel, the pedestal mechanism and a gearbox; a bevel-head and gearbox in the engine room (this box also has a splined shaft sticking out which allows you to simply fit the 24V quarter-HP Mamba drive on to), and a draglink just next to the rudder quadrant. These components are inter-connected with solid stainless steel rods and two sets of universal joints to get round angles in the engine room and under the aft-cabin bed. In the end it was Yachtservice Van Swaay that did the maintenance on the system and, reassuringly, found no traces of excessive wear in the bevel-heads or gear boxes after 23 years of use. After cleaning up everything, we were back in (steering) business...

A word should be said about Mr Dirk Roegiest of Deurne. Thanks to a contact at the Belgian Boat Show (which is held in Ghent each February), we were given his contact details as the man who could sort out our breaking connector pins between the Simrad Robertson drives and the rudder quadrant. Mr Roegiest provided us with a wealth of information and advice and we left him with the bronze rudder fitting to which the Simrad-Robertson drives are connected. He machined down the outer end of the fitting (which had become damaged by the previous breakages, drilled out the 12mm holes for a couple of 14mm ones. And he made up a new set of strengthened and hardened connector pins. When you look at the photo, you'll find it hard to spot many differences with how things were. But the whole set-up is now definitely many times stronger. Mr Roegiest's work have seen us cross the Atlantic and half the Pacific; and not a single nut was loose or displayed any play. (see photo above)!


Over time, communication equipment on board Ngahue IV had also been put together rather haphazardly. In August 2018, we decided to modernise things a lot more, and the list of equipment currently on board looks as follows:

> A SIMRAD RS35 DSC VHF with integrated Class B AIS receiver unit as our principal VHF - situated at the chart table, with a wireless extra handset for use in the cockpit (installed in August 2018). This unit backs up our Comar AIS Class A system.

> There are three hand-held VHF sets: ICOM MC73-Euro - Raymarine 101 plus a 3rd Brand X yellow h/h VHF as our grab-bag backup

> An ICOM IC M-802 SSB with an ICOM AT-141 tuner Single Side-band (SSB) unit, connected to a Pactor modem p4 DR7400 also installed in August 2018 to complete our long-range communication systems - a "Giant Dynaplate" installed under the port quarter of the hull makes for the adequate grounding of the SSB. Pictured here is just the equipment needed to install the SSB set itself; we managed to find spaces for everything (see pictures of chart table area above). The unit gives good reception and transmission, as we experienced during our daily World ARC SSB-net chatter sessions.

> Our main AIS equipment is a Comar 300 Class A unit - this semi-professional unit allows us to send out our own messages and information and is eminently visible! On our World ARC, other boats often used us as a market beacon as we were visible for some 60 Miles and more!!!p

> A Furuno NX-300 modern Navtex receiver with its own aerial, but it is currently linked to our RR Mast-head aerial for long-range communication (using its the supplied Furuno aerial gave the most appalling results!)

> A Sea-Me active radar transponder on our radar pole (which seems to be reaching its useful end of life) & an Echo-Max passive radar reflector in the mast

> Iridium Pilot satellite phone (or IOP - Iridium Open Port) and Internet communication unit, with an on-board Netgear WiFi hub which links this external communication with our computers & iPad. We have two dedicated laptops (an HP Pavilion and a Durabook laptop), both specifically suited and programmed for our communication needs. One has a solid state hard disk, operates under Windows 7, and has all possible automatic downloads switched off to minimise the risk of unwanted downloads at costly Iridium dollars. The other is a "doctored" laptop that operates on Windows 10 (we've had this one "throttled" and "muzzled" so that it doesn't - unless given express permission - chatter with the world via Iridium at $10 per Mb) and offers nearly a Terabyte of hard disk space. It has been specially protected to conform to quasi-military standards of robustness; it withstands humidity and can be dropped up to 1 metre!
Our Iridium air time provider is the AST Group. We were particularly disappointed with them when they cut off our SIM card mid-Atlantic in November 2017, apparently because a programme called Google Marketplace (we didn't even know this programme existed) had downloaded multiple tens of Megabytes and exceeded our monthly quotum several times over! We have established new and better rules with AST so as to avoid such a thing happening again, as we felt it was completely unacceptable to be left without any communication with the outside world for more than a fortnight on an ocean crossing! No met information, no medical comms, no chats to family who were worried sick! We had a second run-in with AST in Tortola, where we spent a lot of time on the phone with them, as we were experiencing difficulties with the "voice" side of our Iridium. Probably the only problem was that after the hurricanes of 2017, the telecom companies in Tortola were heavily using very powerful satellite communications as most land lines were dead and that these were interfering with the much weaker Iridium signals. Once out of BVI, our Iridium Pilot set was working perfectly again! AST, who had at a distance determined that our aerial was definitively defective and no longer under guarantee because of a faulty installation, concluded, after full testing later in the UK, that the aerial was perfectly OK! Surprise, surprise... We did follow their requirements and have adapted the set-up of our aerials at the back of the boat and the Iridium aerial now sits higher than anything else, including our radar. AST now reckons that our installation is fine; the Iridium has certainly been working okay ever since. So I guess that makes us reasonably happy AST customers these days.

> As an Iridium back-up we have an additional Iridium 9555 h/h phone with air time bought from another service provider, so that we are not dependent on AST and the IOP alone!

> We also have a Yellow Brick Y/B tracker Pro, which not only transmits our position, but can also be used for Text messaging and simple e-mails (and even short updates on the boat's Facebook page

> A couple of Sony SSB & Worldband radio receivers are on board as well as a Blaupunkt radio/CD-player in the saloon which enable us to pick up a multitude of radio stations around the world

The radio, television & Navtex equipment are all connected to our very sophisticated RR Pacific aerial in the mast; the many 'boxes' with the antenna's outputs near the chart table look very impressive and when we finally got our television connected to the TV-output, we were astonished by the plethora of signals that came out there.

Electricity and Green Energy

With an increasing number of electric and electronic accessories on board, it is imperative to have a decent sized and reliable battery bank on board, as well as the ability to generate enough electricity to quickly and efficiently charge those batteries. Ngahue IV has a house bank of 6 Victron AGM batteries (each unit is rated at 12V/220Ah and weighs 65kg) which give 660Ah at 24 Volts in three groups of 24V/220Ah (total weigh 390kg). I'm afraid we're still very old-fashioned here and haven't gone down the Lithium route (yet). Shown here 4 of the 6 old AGMs installed at the base of the mast (2 others are installed in the aft cabin under the double berth - see further below). All were replaced in March/April 2017 with a service life of some 5-6 years in mind. We feared that the aft batteries were defective as during our first long sea-cruise they were "cooked" and over-charged during the 48 hours of motoring during our Biscay crossing!. They had to be replaced again in September 2017. We suspected a faulty regulator, which has since been replaced by a much better model (see below). With the subsequent addition of 3 battery switches and 3 Victron Argofet battery isolators, we are now able to isolate each of the battery groups and to charge or run them individually. Allowing for 30-40% of this capacity to be used before really harming these deep cycle batteries, we have found that our battery bank requires recharging every two days or so. So far, we have experienced only one situation where we needed to take down our batteries to 54%; neither the batteries nor I really liked this, but they seem to have survived unhurt and should continue performing well until ±2022/23 when we hope to be back in Nieuwpoort (Belgium)...

In addition to our normal shorepower charging ability, the boat has a set of two small Photonic panels as well as two flexible Solbian SP 125 & two SP 130 solar panels (a total of 4 panels), regulated by a Victron Blue Solar 100/50 MPPT regulator. This should yield some 600 watts of solar electricity in the tropics when the sun shines directly onto the panels (usually we clock up about 400-450 max). In addition there is a Watt & Sea 600W water generator (the small Photonic panels are connected to the smart regulator that came with the Watt & Sea). The Solbians are connected to their own Victron smart MPPT regulator, which has a display showing exactly how much electricity they are producing. Finally, Ngahue IV has a very solid Westerbeke 6kW (230V) generator installed in 1995 by Hallberg-Rassy. (see photos of the psychedelic Watt & Sea regulator sited under the seating in the aft cabin, and the Westerbeke in its red soundshield).

When operating, the Westerbeke generator (pictured twice here, the middle photo as we found her in 2016; the right one is as she is at the moment - for instance the old black feed has disappeared) is quite silent outside the boat and only really audible in the cockpit (the sound insulation on the cockpit sole is quite thin). It is used mainly for feeding the watermaker and the washing machine with AC; these are the major 230V users and they require significant quantities of power. Unfortunately, when the Yard installed the generator, they certainly did so in an aesthetically pleasing, but perhaps not totally practical manner... To explain, the cooling system often ended up with airlocks in it because of the long circuit that the cooling water needed to follow. Furthermore, the hose dipped down and came back up again, and offered ideal opportunities for forming incapacitating airlocks to form everywhere... In the 2018/19 winter lay-up, we had to have the circuit relaid, which you can see if you look very carefully at the middle picture, considerably shortened it, and added a dedicated seawater entry point with its own water filter pot all just for the generator. It previously shared a seacock & filter pot with the freezer, toilet and watermaker. Westerbeke doesn't disapprove of this, but suggests not sharing inlets with other users as it is not quite ideal. Well, that point has been remedied. Ideally, we need still to add an extra and dedicated inlet for our watermaker too. That's on the "to do" list...

During the first Atlantic circuit part of our circumnavigation we had lots of problems with the generator (as everyone seems to have). This led us to increasingly question the reliability of our Westerbeke (referred to as "Wester-break" by a charter company manager where we were moored at the time); we felt that the unit would be best completely replaced by a modern Whispergen one... A patient and conscientious engineer in the BVI looked at the Westerbeke and found that previous maintenance had not been done properly, e.g. the seawater pump had been mercilessly hammered and bolted into the engine block so that the pump axel and impeller were misaligned (see photo) and led to early failure of our impellers. The exhaust elbow also failed to allow for a free flow of cooling water into the exhaust system. All of this had been hidden by the fact that the cooling water of the Westerbeke is normally - on our boat - directed BELOW the waterline. Although less friendly to the ear, we have now redirected the water flow through the normal exhaust ABOVE the waterline, which allows you to see whether there is a clean flow of water coming out of the exhaust. Yes, this set-up could lead to a pressure build-up in the exhaust, which isn't good. But the Westerbeke has a sufficiently big engine for this not to be a problem. The new seawater pump and exhaust elbow have transformed our Westerbeke into a much more reliable machine. Maricom recommended that we also install a Blue Sea Systems M2 1838 AC multi meter to electronically monitor the electricity produced, both by shore power and more importantly by the generator. That way we can see immediately whether the electricity-generating side of the generator is operating properly. We therefore decided to stay with our Westerbeke, which has worked faultlessly since. It's only done some 600 Hours, which for this type of generator (generally designed for some 2000+ hours, apparently) is quite low, with lots of margin left.

On the solar front, we started off having just two high-performance Solbian SP125 black contact flexible solar panels that we simply "velcroed" to the bimini. Whether the boat is at anchor or sailing, these two panels potentially generate 250-plus watts at 24V. We thought that this would be enough to cover our (mainly) refrigeration needs. Already in Belgium, on a sunny day, we found that they easily generated 150 watts; in the tropics, with careful positioning and on a sunny day, they reached approx 225 watts at midday. Our initial experience during the first departure on our circumnavigation showed that this output was a little inadequate. Therefore, we decided to add another two Solbian SP130 panels to generate a total of 450-500 watts from say 10 a.m. to 4 p.m. each day. When we doubled the number of solar panels, we of course also needed to upgrade the Victron regulator to their 100/50 model. We also discovered that we needed to adapt the wiring of the 4 panels as in series they started producing close to 100V: a bit too close to the operating limits of the Victron regulator. By connecting the 4 panels in parallel, the voltage drops to about 45V, and the overall power output reaches the hoped-for 450 watts quite easily. In addition, there are a further two fixed Photonic 50 watt solar panels fitted to the deck, just before the cockpit windscreen. These are wired into the Watt & Sea regulator, which specifically allows for two inputs: one from the water generator and one from an extra 'green' source, in our case these two panels. These two panels do tend to get shadows on them from the boat's superstructure, so their output can drop sometimes. They also look a mess and we replaced them in 2021 for slightly better ones.

Regarding our hydro-generator, it is of the essence to keep the Watt & Sea well down in the water (at least a foot/30cm in the water), so that the propeller can achieve its full electric output. Unfortunately, the HR53 stern comes up quite a bit and despite having the long arm version, our Watt & Sea often lifts out of the water, especially in moderate to rough seas and on a port tack. After our first Atlantic experience we also decided to fit the larger 28cm propellor on our Watt & Sea in order to generate more electricity! Clearly though, the rated 600 watts is only generated by boats that sail much faster than we do and manage to keep the propeller well down in the water all the time. At a rough guess, I'd say our Watt & Sea delivers about a quarter to a third of its stated output (covering probably the fridge and/or freezer needs). In the trade winds of the Pacific, the boat was heeled over more favourably for the Watt & Sea. Several people we have spoke to all agree with us that the Watt & Sea is an interesting unit, but needs relatively high boat speeds to attain the output that is written on the unit!!! Obviously we need to sail faster...

With regard to generating electricity with the main engine, our Volvo-Penta TAMD 41B engine was retro-fitted in 2010 with an additional moderately high-output 24/100 Amp alternator. The old unit is still pictured here; it is an American Leece-Neville BSC3014U model. Unfortunately, under previous ownership, the alternator had been damaged by copious amounts of seawater dripping on it. When we had the unit off the engine for a rebuild, it couldn't be safely reconditioned (too many internal bolts oxidized together). So we had it replaced altogether by its successor model (which is a smart and mean-looking dark-black unit). The old unit could be serviced though (but not fully reconditioned and rebuilt), and now has a place in the boat with the other spares on board.

Its output is controlled by a totally up-to-date new Sterling Pro-C Digital high performance smart regulator (pictured here - the red box under the ventilator) that our electronics suppliers Maricom installed in August 2018. It certainly looks an impressive piece of kit fixed to the side of our engine room.

The output from the standard Valeo 12V/60Amp alternator on the Volvo-Penta engine is used to simply charge the engine starter battery bank. This bank now consists of two Victron AGM 12V/110 Ah units - new from Spring 2019 - and is, as is custom on many larger Hallberg-Rassies, situated under the bed in the aft cabin. This battery bank starts the main engine, the generator and feeds the 12V Truma gasbottle electric cut-off valve. During the 2018/19 winter refit, we decided to have the standard Valeo alternator rebuilt as its voltage output at low revs was insufficient, which triggered low-voltage alarms (most distressing when manoeuvring the boat around in the harbour using low revs only)!

When we acquired Ngahue IV, we "inherited" the electrics as installed by the previous owner. This turned out to be nearly exclusively equipment from the Victron company and specifically their blue energy product range. Our previous boats had been equipped with Mastervolt material, so in addition to getting used to a different colour (blue instead of grey & green), I also needed to adapt to a slightly different approach to energy generation. We have a:

> Victron Inverter 230V/2000W - the Phoenix model;

> Victron 24V/100 Amp battery charger - model Skylla TG (for the main battery bank - it started playing up in mid-2018 and needed to be replaced in 2019!);

> Victron 12V/25 Amp battery charger - model blue power (for the 12V, mainly engine starting battery bank); and

> Odelco Battery Control System DCC 40000 which monitors energy flowing to and from the house battery bank - there is also a Victron MPPT Controller instrument showing how many watts our solar panels are generating.

The inverter and generator outputs feed into the boat's wiring via a hefty selector switch (Off/Ship's batteries - Shore-power - Ship's Generator - Inverter; switch renewed in 2017) and thus allows the direct use of the washing machine, or the Aquatec watermaker which operate at 230V. Plus of course any electrical equipment that might be switched on at sea (e.g. vacuum-cleaner). Below you can see pictures of (from left to right) our Victron Battery charger, the Inverter and two of our 6 Victron AGM batteries - 12V/220Ah, that were unfortunately "cooked" by a malfunctioning regulator during two days of non-stop motoring. These are situated under the double bed in the aft cabin. In the second photo block underneath, you can see how we have nearly doubled the capacity of our 12 Volt circuit by a much better use of the available space in the battery box. We now have two 12V/110Ah AGM units instead of a single 12V/130Ah battery. And to prevent our batteries from being cooked again in the future, we have isolated our 6 batteries into 3 separate 24V/220Ah banks that can be individually charged and used to power the boat's needs.

As on our previous boats, a lot of thought also went into reducing electricity consumption, e.g. through "LED-ifying" all light-bulbs, and rendering the fridge & freezer cooling systems more efficient. Careful thought has also gone into the boat's electronics, whole parts of which can be switched off whilst ocean sailing, thus conserving energy. With all equipment running, consumption whilst sailing will easily add up to 8-10 amps (at 24V), much of which is normally covered by renewables (our Watt & Sea water generator and our Solbian solar panels). This isn't always the case (see above) because the water generator is not always deep enough in the water, and initially with only 2 Solbians we were on and mostly just under the borderline of self-sufficiency. With about 250Ah truly available from the domestic batteries (on the total capacity of 660Ah - we don't like running them to below about 70%), charging cycles at sea are usually about once every other day or so (running the generator or the main engine is also useful to make some fresh and some hot water at the same time). When at anchor, we expect our now extended to 6 solar panels (4 big ones/2 little ones) to cover all our energy needs, certainly in the tropics.

Maintaining a cool temperature in the boat is achieved through keeping hatches open and relying on several Caframo ventilators installed around the boat in strategic places. For those people familiar with Renault's 1950s/60s Dauphine model (this was my first car), its instruction manual stated: "For ventilation, open the windows"!! We applied this kind of simplicity and deliberately stayed away from installing air-conditioning units because of the heavy energy drain they represent. And we certainly have no wish to run the generator much of the time just to keep cool...

To keep us safe from stray currents when plugged into shore-power, we have had a Mastervolt 6kVA isolation transformer complete with a Mastervolt soft-start unit fitted, which accepts 110 & 230 volt inputs. The soft-start unit is there to prevent our electricity-hungry boat from tripping all the fuses in a marina electrical system when initially plugged in...

All our new electrical, communications and electronics that were fitted in May 2017 and again in August 2018 have been installed by Dave Cobb, Paul Olley and Mike (son of Dave) Cobb of Maricom. I was first introduced to Dave and Paul in October 2004 by the Hallberg-Rassy UK representative, and have been a happy and loyal customer ever since. Twice now, I have even asked them to come especially to the Netherlands and to Belgium respectively to work on our Ngahues (III & IV). They have a deep insight into what equipment is on the market, and what generally works and what generally breaks down. Their advice - which evolves with what is available on the market - is always to the point and completely neutral. We have systematically followed their advice and rarely been disappointed! A phone call or a text-message have sufficed to put matters right, even for things they had not installed. It would be an understatement to say that we like our Team Maricom!

Water & the Water-maker

As standard, Hallberg-Rassy 53s have a single massive stainless steel water tank which holds ±1020ltr of water. It is situated under the floor in the forward part of the saloon. We found that in an ocean swell, the tank moved around and made strange "boink" like noises. During our 2018/19 winter refit, we had the tank fixed win place with large wooden wedges. The "boink" is now significantly less. Hot water is provided by a 60 ltr calorifier, which is heated either by the coolant fluid from the engine, or via a 230V/800W heating element. This tank developed an internal leak which resulted in fresh water seeping into the Volvo-Penta cooling circuit (and causing the expansion tank to overflow!). This was spotted by the careful eye of Dominique Fily, our VP engineer in Papeete. He successfully found a replacement new Isotherm 40ltr calorifier (quite a feat in Tahiti that was locked down with the Covid-19 virus at the time) and installed it in May 2020 (see series of pictures below). In the end, the repair was a simple "in" and "out" affair, requiring only a small amount of welding the new tank straps to the old tank's ones.

Ngahue IV has a Jabsco V-Flojet 5.0 waterpump that operates without an external pressure tank. On the Yahoo Hallberg-Rassy discussion forum (see Links page) there have been mixed and critical reviews of such a set-up. Most of the time our system works, but the pressure sensor on the pump does indeed occasionally let us down and stops working. We simply switch power to the pump off and on again at the electricity panel and that seems to prompt it to want to work again. The pump has its own pre-pump filter which in our installation was so neatly hidden that we never noticed it. Thanks to a Hallberg-Rassy pre-ARC inspection we were made aware of it and now include its cleaning as part of our regular maintenance. Needless to say, the wire mesh filter was nearly clogged up after 3 years of use (nearly 2 years of which were live-aboard). Our boat came with double charcoal filters fitted by the Yard. On the HR53, the previous owner, a man of immense strength in his arms and hands and had tightened them to such an extent that we never succeeded in opening them to replace the filter elements inside. This gave us an excellent excuse to order two new filters from Mellie Rassy at HR Parts. They have been duly fitted! Seen here with the feed pump from the watermaker installed underneath them. Seen here with the feed pump from the watermaker installed underneath them. When we are not in a North-European marina, we view pontoon water with a suspicious eye and all water goes through a 20 micron paper filter.

When looking around for a watermaker for the boat - we wouldn't like to die of thirst in the middle of an ocean surrounded by sea - we wanted something that was solid and reliable. Our previous Hallberg-Rassies 37 & 43 both had US-made Spectra watermakers on board, operating on 12 volts. The one on the 37 was owner-installed; the one of the 43 was Yard-fitted. Most watermakers in sailing boats operate with a reverse osmosis process, i.e. pumping seawater through a fine membrane under very high pressure in order to remove salt and other impurities. This system requires a lot of energy and typically discards two to three times the quantity of water produced overboard as a reject-saline solution… After careful consideration, we opted for a technologically relatively simple watermaker produced by the German company Aquatec. Their AC/150 model, which we opted for, comes in a modular package. The advantage is that this allowed us to install the various parts of the watermaker around the aft cabin, the aft heads and the aft wall of the engine room.

Because all of a sudden you discover how "small" a Hallberg-Rassy 53 really is... Our membranes, for instance, would only fit (just!!) under the two top cupboards hanging over the seat in the aft cabin (see picture; Leon Schulz helpfully suggested mounting the membranes under the saloon settee; but we opted to keep this space for storage of food and spares). In order to get the most efficient and least energy-hungry solution, the watermaker runs on 230V AC, which is provided by our Westerbeke generator (see above). Of course this begs the question of our total reliability on this unit to provide and adequate supply of 230V for the watermaker - our inverter is not big enough! DC watermakers are getting much better, and perhaps we should have opted for such a solution. However, the owner of Aquatec, Herr Joachim Matz, with whom we had a loooooooooooooooooong conversation during BOOT Düsseldorf 2016 was quite adamant. So the 230V route was our chosen path... At full throttle the unit produces a lot more than 150 liters of water per hour but we try to keep production at about 150 ltr/hr. It requires about 10-15 liters of fresh water to flush out the whole system at the end of use and requires about 10 amps electricity from our generator (about a third of its capacity). We estimate that the watermaker should be run for an average of about 2 hours every 3-4 days. Aquatec watermakers have no electronics in them: in truth, there are only three electric switches as well as two electric motors in the whole system! The individual parts that suffer most from wear and tear (notably the electric pumps) are Belgian and German made and fully tested for an impeccable track record (and we have a spare for the smaller of the two pumps).

As already stated, our main problem with this unit, when we started fitting the various parts of the watermaker into the boat, was the sheer length of the two tubes containing the membranes. After much looking around, we found that we needed to install them in a visible (though not too invasive) place under the starboard cupboards in the aft cabin. Readers can be the judge of whether we succeeded... Fortunately they are white and reasonably decorative and don't intrude in the furnishings of our aft cabin too much... In true Hallberg-Rassy production style, we mounted key elements of the watermaker on grey wooden boards (which we made up in the comfort of our home in Brussels - most of the work was done over the winter 2016/17, and although the boat was "inside", you could hardly call the engine room an inviting environment to work in). In the Yard, these boards are then simply screwed into place and interconnected once the worker returns to the boat - it's an easier way of working. Pictured here one of those boards with all the primary filters... These are sited in the aft end of the engine room and do not impinge too much on the space available there. You can still quite comfortably walk (or crawl) into the engine room to work around the main engine and the generator without getting too caught in equipment...

The Galley

The galley on Ngahue IV is situated to starboard, as you descend the main hatch and stairs. This is a pretty standard lay-out on many boats, including Hallberg-Rassies. Increasingly though, on the bigger Hallbergs, galleys have been placed in the walk-through to the aft cabin. The advantage of our set-up is, we find, that the cook is firmly wedged into a very full U-shaped galley and can work reasonably safely at sea. The cook remains visible to people in the cockpit, and can hand up mugs and plates from the safety of the U-shaped galley. During our first 15,000M sailed with the boat we discovered two issues really. The first issue was the fridge, which is a top-opening unit, set in a corner of the galley. As described in more detail below, we needed to "un-improve" the fridge by stripping out the insalubrious layers of extra insulation that the previous owner had added. We then discovered that the fridge is actually a VERY BIG BOX and that you need long and flexible arms (a cross between a gorilla and an octopus) to be able to reach for the food that is stowed in the lower recesses of it. The second issue was our Force 10 gas cooker. The pan holder on it was the wrong design, so that when the cooker swung around in a seaway, the knobs on the pan holder knocked against the galley working surface and flew off. After studying a gas cooker for sale on Tortola, we discovered that another and better designed pan holder - one with an off-set built in (see photo below) - was available from Force 10. We ordered it and fitted it: problem of flying pots and pans solved! One really wonders why this particular pan holder model wasn't fitted on our cooker in the first place!


As described on several occasions, the previous owner had "improved" the energy efficiency of the fridge and freezer on Ngahue IV by gluing additional sheets of polystyrene to the walls of the freezer and subsequently gluing sheets of thin perspex over the polystyrene. Referring to the series of pictures below of the "before" situation and you will notice how much space was used up by this method. The series of 4 photos shows the work as we did it in the freezer - and the last photo on the right shows a not much better situation in the fridge. We dread to think what a laboratory analysis of the brown water would have revealed. Instant death, no doubt... And Gordon Ramsay would have closed us down in a wink, as he does sometimes in his Hell in the Kitchen programmes.

Here a series of photos taken during the removal process of the extra layers of insulation. There's a series of 4 photos on the "Preparing for the ARC" page showing the final result...

Because the previous owner hadn't sealed the joins between his perspex very well, you can see how water, condensation and general muck had seeped into the bottom of the fridge and freezer. As a result, both smelled really bad. But also, this extra insulation had greatly reduced the space available, especially in the freezer box where only a few bottles for instance could be stood up. Furthermore, the freezer refused to "freeze" below -3°C because the previous owner had also decided to install a Webasto ASU cooling unit; these are quite inappropriate for achieving really cold temperatures in larger freezers. This unit was certainly adequate for the small fridge on my first Hallberg-Rassy 29, but no good in the HR53 freezer box! We removed the extra internal insulation - a messy job - and after sanding down everything to a flat, even and easily cleaning surface, we painted the inside of the fridge with a special beige paint that withstands low temperatures (pictures on the Preparing for the ARC page).

Pictured here is the compressor for the fridge which is air-cooled and was placed, by the previous owner, under the floorboards in the saloon area. We have left it there, but removed the compressor for the freezer (part of it just visible to the right in the picture) which was placed next to it as the whole cooling system for the freezer needed to be removed anyway. We now needed to look around for alternatives and after some hunting around, opted for an Indel-Webasto (Isotherm) seawater cooled freezer unit. Interestingly enough, all manufacturers seem to use Danfoss compressors for their fridges and freezers. Our model came with a Danfoss BDF80 compressor and a huge cooling plate (130cm in length) and is called their Magnum range. Furthermore, the compressor is cooled by seawater which is circulated around the compressor thanks to a dedicated water pump. The system is particularly recommended for boats requiring a lot of "cold power" in the tropics - exactly what we need for our freezer around the equator… Fortunately, after looking around the engine room, we found - quite by chance - the original water inlet & outlet for the 1995 Frigoboat cooling system that Hallberg-Rassy had installed for the first owner. We re-used the inlet, which saved me from drilling an extra hole in the boat - always a tricky business... Quite by chance, and some months after installing the new compressor, we discovered that the old hoses from the Frigoboat era were about to burst, which would indeed have sunk the boat, as all these connections are helpfully placed under the waterline and in places that are difficult to inspect! A new hose was quickly fitted and the installation made safe again! During our winter 2018/19 refit in Bruinisse, all of this was removed and new Trelleborg hoses and seacocks fitted to make for a 100% safe installation.

Our fridge cooling system has therefore essentially remained unchanged, despite Leon Schulz's advice to change both compressors to Webasto's Magnum range. This is what he has done on his boat, the Regina Laska. Our reasoning is that at the moment, the fridge works too well and even at the highest temperature manages to freeze our vegetables and fruit to pulp and transforms our soft drinks into ice. Our hope that as the fridge volume has increased with the removal of all that internal insulation, the effect of the evaporator will be less, and consequently achieve a "normal" fridge temperature as a result proved to be in vain. Yes, in the tropics it proved to be less efficient than a water-cooled unit; but we hope our additional external insulation and tweaks to the refrigeration system that we have in mind for the future will keep consumption within bounds. Both units require 2 to 2.5 Amps (at 24V) to operate, and use about 30 Ah over a 24-hour period in the tropics. We have enough power-generation possibilities on board to cover the energy hungry requirements of our cooling appliances!

As we were approaching Tahiti, the freezer compressor started becoming quieter and quieter and once in Marina de Papeete became completely silent! On the one hand, this was good news, as we could sleep in peace. Until, one day, I touched the compressor and nearly burned my fingers... It transpired that the seawater pump had stopped working altogether and the freezer was operating without any cooling system of its own. Fortunately Luc Vacher of Polymarine Solutions in Papeete managed to find a replacement relay and a new seawater pump to repair our freezer. The old seawater pump had corroded quite badly (see picture on the left) as the result of a leak - when putting everything back together, we have tried to ensure that the various components might avoid causing a serious new leak in future. The two other pictures show the repair in progress and the cleaned up compressor readily working again afterwards.

After a few months in Tahiti, the fridge also stopped working: it required a new electronic regulator: the compressor and gas was all in order; but the continuous heat in Tahiti had been too much for the controlling electronics... This was one of the things that we found as the Covid-19 pandemic led to us staying put in Papeete marina for more than 7 months, namely that systems operating in the tropical heat of a constant 28-30°C are not built for this and just pack up after some time. Three photos showing Luc Vacher, our Mr Cold working on the fridge compressor which is in the bilge; the new manual bilgepump replacement (situated under the floor next to the charttable); and the waterpump replacement for the freezer comlpressor (the membrane on the old pump broke).

One final comment on our fridge and freezer... Strangely enough, the lid of the freezer is only half as thick as the lid of our fridge and very easy to lift (the fridge lid weighs a ton and needs lots of strength to lift). Funny how Hallberg-Rassy didn't put the same amount of insulation around the freezer, which has to deal with far lower temperatures and generates much higher potential heat losses than the fridge!!!

Keeping cool inside the boat

Inside the boat, we have installed 7 fixed Caframo 24-volt ventilator fans: 3 in the saloon, 2 in the aft cabin, and 1 in each of the fore cabins. After my (hot) experience of working in the engine room in the tropics, we added a Hella fan in the engine room and also have a mobile Caframo fan on a wooden pedestal which we use where it is most needed - after all, it gets very hot there in the tropics. All fans operate at three speeds, the lowest of which is reasonably inaudible (and provided the fan is not next to your ears, can be quietly slept next to). Speeds 2 & 3 progressively make more noise, but do shift more air-mass. Usually, large Rassies have air-conditioning on board, with up to 3 units cooling the aft cabin, the saloon and the forepeak. But airco units require a lot of energy (which is why you have a big generator on board, the Yard would say...) which require extra holes in the hull to let seawater in and out to cool the airco units. From what I read, you need either a very, very, very large battery bank, or a generator running to keep the air-conditioning going (or special shorepower in the Caribbean & elsewhere). We're interested in none of these aspects, and have therefore opted for the "poor man's airco": open windows and hatches with the Caframo ventilators to circulate whatever (cool) air comes into the boat. Experience in the Caribbean and most of the Pacific (up to 30°C with lots of humidity) is that this solution is pretty much OK actually... It only becomes really hot inside in 30°C+ and the sun beating on the boat all day long... Adding biminis and large sheets to keep the sun off the windows works very efficiently too... The only flea in the ointment are tropical showers: you need to watch your windows to avoid getting the boat's interior wet. Then again, things do dry very quickly in the tropics! And we did go long-term sailing to escape the cold weather in Europe, no??? Pictured here the two fans in the aft cabin.

Return to Homepage